Normalized stochastic gradient descent learning of general complex‐valued models
نویسندگان
چکیده
منابع مشابه
Online Learning, Stability, and Stochastic Gradient Descent
In batch learning, stability together with existence and uniqueness of the solution corresponds to well-posedness of Empirical Risk Minimization (ERM) methods; recently, it was proved that CVloo stability is necessary and sufficient for generalization and consistency of ERM ([9]). In this note, we introduce CVon stability, which plays a similar role in online learning. We show that stochastic g...
متن کاملLearning Rate Adaptation in Stochastic Gradient Descent
The efficient supervised training of artificial neural networks is commonly viewed as the minimization of an error function that depends on the weights of the network. This perspective gives some advantage to the development of effective training algorithms, because the problem of minimizing a function is well known in the field of numerical analysis. Typically, deterministic minimization metho...
متن کاملGradient Descent for General Reinforcement Learning
Andrew Moore [email protected] www.cs.cmu.edu/-awm Computer Science Department 5000 Forbes Avenue Carnegie Mellon University Pittsburgh, PA 15213-3891 A simple learning rule is derived, the VAPS algorithm, which can be instantiated to generate a wide range of new reinforcementlearning algorithms. These algorithms solve a number of open problems, define several new approaches to reinforcement learn...
متن کاملVariational Stochastic Gradient Descent
In Bayesian approach to probabilistic modeling of data we select a model for probabilities of data that depends on a continuous vector of parameters. For a given data set Bayesian theorem gives a probability distribution of the model parameters. Then the inference of outcomes and probabilities of new data could be found by averaging over the parameter distribution of the model, which is an intr...
متن کاملByzantine Stochastic Gradient Descent
This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the m machines which allegedly compute stochastic gradients every iteration, an α-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds ε-approximate minimizers of convex functions in T = Õ ( 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2021
ISSN: 0013-5194,1350-911X
DOI: 10.1049/ell2.12170